

Query Resolution in Independent Databases by Partial Integration

Alejandro Botello C., Adolfo Guzmán A., and Renato Barrera

Centro de Investigación en Computación, Instituto Politécnico Nacional
[1l

,

Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de

México
[2]

botello@cic.ipn.mx
[1]

, a.guzman@acm.org
[1]

, rntbarrera@yahoo.com
[2]

Abstract

There is an abundance of information spread across

the world, usually stored in databases or published as

web pages. These data is not structured in a common

way, because the sources were built to fill different

purposes or they were made by different persons.

Presently, if a user wants to exploit data coming

simultaneously from diverse data sources and obtain

useful results, he must combine all disperse pieces of

relevant data and check the correspondence between

them, regularly by hand.

In this research we propose the development of a

database integration system (DaBIS) with the

following features: 1) it allows many connections with

remote and heterogeneous databases to extract their

constitutive schemas; 2) it makes inferences about the

data of each database, using matching algorithms to

produce useful correspondences; and 3) it solves a

user’s global queries by means of a graphical

interface, when the query involves diverse information

sources. Our main idea is to combine in a

semiautomatic way partial results obtained from

distinct databases, and get relevant results, while, at

the same time, simplify the formulation of difficult

queries.

1. Introduction

Commercial enterprises, academic institutions and

government bureaus, among other actors, daily manage

large amounts of information published in the Internet

either to enable data interchange, or simply, to make it

publicly available. Such information, though, does not

generally have a common structure that allows a

straightforward solution of global queries. For

example, suppose that a user want to know “the

average age of high school students that live in the

North of Mexico City, and have a parent working in

some government’s office”. In order to solve this

query, we have to decompose it into subqueries

corresponding to each information source, i. e., we

need to get first the students names that live in the

North of Mexico City, then their parent’s names, and

the government’s office where they work at, then

verify the accuracy and correspondences between data

(for example, that the Zip code from student’s address

corresponds to the northern area), and finally, combine

all partial data into a useful result. We suppose that a)

all the information sources are remote, and b) that we

know nothing about their structure, or about which

information sources have data relevant for our query,

so that we can have an idea of results that can be

obtained from each source. These hypotheses make the

search and analysis of the information more complex.

In this work, we propose the development of an

integrator (relational) database system, DaBIS, with

the following characteristics:

a) It enables the connection and management of

many heterogeneous databases, the acquisition

of their internal structures, and the retrieval of

partial results from subqueries;

b) It establishes, in a semi automatic manner, the

logical correspondences among all database

structures, by finding content mismatches,

defining and applying data transformations,

and inferring some mappings for each data

structures;

c) It decomposes and solves queries formulated

trough a user graphical interface, in which the

global query are divided into several

subqueries mapped to corresponding data

sources, and

d) It merges the partial results into a final answer.

Figure 1 shows the structure of the DaBIS and the

manner in which a sample query is solved. The method

used in the solution will be explained in detail in

Section 2, while a comparison with other systems is

showed in Section 3. Finally, in Section 4 we comment

some results from test, and give some conclusions.

2. Architecture of DaBIS

DaBIS has four constitutive modules:

- The Manual Linker (ML)

- The Graphical Query Builder (GQB),

- The Query Solver (QS), and

- The Data source Access Connector (DAC)

2.1 The Manual Linker and the Graphical

Query Builder

The system manager incorporates the schemas (in

Data Definition Language, DDLs) of each available

data source in a panel (Figure 2), and draws directed

lines (links) between pairs of data source to establish

relationships between them. He can establish some

restrictions among the data so linked, as ranges,

aggregates, ordering, etc. For example, suppose that in

one database the student name is “John C. Smith”,

while in the other is “Smith, John C.”; both refer to the

same person, but the orders of the first name, middle

name and last name are different. In some cases, the

system can detect some of these dissimilarities, based

on a column’s data type (integers, characters, dates or

other), or on data restrictions (primary/foreign key,

uniqueness, cardinality and participation) or on data

content, e. g. formats (mm/dd/yyyy or dd-mm-yyyy),

ranges (ages from 18 to 65 years), groups (‘Manager’,

‘Analyst’, ‘Programmer’), conversions (from dollars to

euros) or substitutions (N, S, W, E). In the case of data

mismatches that can not be detected by the system, the

system administrator can add new restrictions, written

as data transformations functions to be included into

Secretaria de Educación

Pública

Students

Name

School

Instituto Nacional de Geografía

e Informática

High schools Name

ZIP

Address

? = "North zone"

Secretaria de Gobernación

Goverment

dependecies

Employees

Registro Civil

? = avg

Citizen

Name

Parents

Birthdate

Internet

Gobernación

SEP
RC

INEGI

SS
IFAI

Integrador y Explotador

de Información Dispersa

Disperse Information

Integrator

Partial results

A global ontology of information sources

guides the user search.

The user draws a global query

and establishes the query‘s

search conditions

Global User Query

Descomposition into

subqueries (SQL)

Graphic interface to

express global

queries

Figure 1. Solving global user queries over disperse data sources

Figure 2. Panel where the system administrator
adds links among relevant data items in

disparate databases. These links are added
only once, each time a new table is introduced

SQL queries. The system administrator has to perform

this task (to add databases to the panel, through the

ML) manually, only once for each new table.

2.2 The Query Solver

In this module, the system infer some relationships

among the data sources involved in the query, e. g., if

the site with a student’s average age does not include

the geographic orientation, we need to find some kind

of relationship with another data source that was not

initially considered, like cartographic maps of schools

in Mexico City. For example, if one data source has the

school’s names in the North zone, and other data

source has the government dependency’s addresses, the

system has to find some type of relationship between

them, like the Zip code. If the system can not provide

some inference, it asks the user for a possible

alternative way.

Then, the Query Solver transforms each data source

diagram into subqueries, one for each involved data

base, written in SQL, to be solved by the correspondent

“local” database management system (DBMS).

Although databases are independent from each other,

having different schemas, by combining parts of their

data useful results can be obtained. Then, each

subquery could be solved by a SQL sentence that

returns only tuples involved in user constraints, and

with the respective union attributes. The order in which

partial queries are solved is relevant, because it is

necessary to find the related attributes that permit to

join data tables.

In the example of Fig. 3, if all information was

contained in a single database, the SQL query that

solves the problem would be like:

Select avg(s.age)

from GovDependencies g, Citizens c, Students

s, HigSchools h

where g.employee = c.parents

and c.name = s.name

and s.zip = h.zip

and h.zone = ‘N’ and h.city = ‘Mexico’

In a environment in which databases are disperse and

all of them are independent, DaBIS need to solve this

global query by rewriting it into several subqueries,

one for each table included in the from clause, in the

following way

select avg(t.age)

from temp4 t;

[temp4] 

select getAge(t.birthdate) as age

from GovDependencies g, temp3 t

where g.employees = t.parents

[temp3] 

select c.birthdate as birthdate, c.parents

from citizen c, temp2 t

where c.name = t.name

[temp2] 

select s.name

from highSchools h, temp1 t

where h.name = t.school

and h.zone = ‘North’ and h.city = ‘Mexico’

[temp1] 

select s.name, s.school

from students s

Although in each step there are partial results (from

temp1 to temp4), these tuples are sent to the QS, which

receives them and joins each one of them creating with

the results a new temporal table (temp1). In our

example, the QS follows this sequence: it first get the

data corresponding to attributes name and school from

the students table, to then forward this result to be

joined with the high school’s information (highSchools

table), filtering these results by zone and city;

afterwards, the results are joined with citizen’s

information, to be in turn joined with the government’s

data to produce a new partial result. The data obtained

from each subquery is inserted into a local DBMS

(hsqlbd)[8], which is a small relational engine built as

Java classes, and easily transportable with the entire

system.

2.3 The Data Source Access Connector

Each leaf node in the ontology’s diagram represents

a database that has tables, users, views, and other

database objects. The information about these objects

is extracted from the database’s schemata and is stored

Figure 3. Path or diagram drawn by the user
over the panel of figure 2, to indicate the

query “give me all the students that live in…”.
A path is drawn for each query

locally as a XML document, as we shown in Figure 4.

This file contains all related information about

database structure, like catalog/schema owners, table

and column’s names, data types, primary/foreign keys

relationships, functions/procedures supported, and also

database connection properties (JDBC driver name and

URL, user name and password).

When one partial result is joined with another data

source, the DAC verifies whether there are some

transformations to be applied to data, e. g. conversions,

substitutions or validations (as mentioned in 2.1),

stored in an XML document (mappings.xml). An

XSLT template has been built to map these data

sources, applying string compilations and probabilistic

algorithms to determine the degrees of similitude

among the sources; these algorithms are based on a

dictionary built with common terms in the schema

definition. If no exact or approximate correspondence

exists, the system will then try to infer correspondences

based on their content, exploring the values and

restrictions, and looking for common patterns in data

values. We have solved some data dissimilarities like

naming and domains, and are presently working in

other restrictions. These transformations are edited by

the system administrator, who marks correspondences

between nodes, and applies these changes to the data

source’s ontology. Final results of partial integration

are stored as XML documents to be displayed on the

graphical user interface.

Each DBMS in the system is accessed trough a Java

JDBC driver, of type 1 or 4, and their schemata been

extracted by the ResultSetMetaData JDBC API

interface. The schemata obtained by the JDBC drivers

are stored in a XML documents, one for each data

access, this allows the system to know locally the

schema of a data source even in the absence of a net

connection. With such schema information, it is

possible to draw a relational diagram showing the table

names with their contained columns, and their

relationships. If no explicit relationships are found by

the ResultSetMetaData implementation, the inference

engine tries to determine the most probable integrity

restrictions using the primary/foreign key references; if

this is not possible, the system will ask the user to

mark the proper links between tables.

Applying XSLT templates to the metadata’s XML

document, we can obtain the SQL’s DDL create table

statements (see Figure 5) as well as the XML Schema.

Finally we map each of the database transformations to

generate the final result. If the user finds some

inconsistencies, he can correct the model manually and

the system will draw some inferences to apply them to

the solution of the same problem in other similar

contexts. For now, we not considerate do any kind of

optimizations, but in a near future could be

implemented.

3. Related Work

There is a plethora of work in the integration

information area. Based in taxonomy described in

[work], in which there are several main criteria to

classify the different approaches, the most relevant

systems to compare with DaBIS are TSIMMIS[7],

SIMS[9], Garlic[10], and INDUS [INDUS]. While

TSIMMIS and Garlic use a mediator agent, SIMS,

INDUS and DaBIS use an ontology approach to

integrate data sources, which abstracts user’s models

Figure 4. XML document for a data source
connection.

Figure 5. SQL DDL obtained from a data
source connection.

from physical considerations of data sources. Although

all of these systems enable the user interaction to select

data source to be integrated, none offer a complete

abstraction of query formulation, as we propose with a

graphical user interface.

4. Results

We are using JGraph[7] to diagram queries on the

user’s interface. For now, this interface show the data

sources as a graph, and user can connect many graph to

express queries. The system solves this relationship

with mappings, and permits the user to establish

conditions and restrictions over the paths. When a path

is solved, the results are integrated and shown in XML

format.

With respect to database systems, we have tested

our system with MySQL 4.0, MS Access 2003,

SQLServer 2000 and Oracle 10g. In some cases, using

JDBC:ODBC driver has some problems with metadata,

specifically with the primary/foreign keys.

Acknowledgments. This work has been supported

by CONACyT.

REFERENCES

[1] William Cohen. “Integration of heterogeneous databases

without common domains using queries based on textual

similarity”. In Proc. Of ACM SIGMOD Conf. On

Management of Data, Seattle, WA, 1998.

[3] R.J. Miller, M.A. Hernandez, L.M. Haas, L.-L. Yan,

C.T.H. Ho, R. Fagin, and L. Popa. “The Clio Project:

Managing Heterogeneity”. SIGMOD Record, 30(1):78-- 83,

2001.

[4] H.-H. Do and E. Rahm. COMA - A System for Flexible

Combination of Schema Matching Approaches. In VLDB,

2002.

[5] E. Rahm, P.A. Bernstein. A survey of approaches to

automatic schema matching. VLDB J. 10:4 (2001), pp.

334:350.

[6] Michael R. Genesereth, Arthur M. Keller, and Oliver

Duschka, "Infomaster: An Information Integration System,"

in proceedings of 1997 ACM SIGMOD Conference, May

1997

[7] Sudarshan Chawathe, Hector Garcia-Molina, Joachim

Hammer, Kelly Ireland, Yannis Papakonstantinou, Jeffrey

Ullman, Jennifer Widom. The TSIMMIS Project, Integration

of Heterogeneous Information Sources. Department of

Computer Science, Stanford University, March 1997

[8] A. Kirk, A. Y. Levy, Y. Sagiv, and D. Srivastava. The

Information Manifold. In AAAI Spring Symposium on

Information Gathering. AAAI, 1995.

[9] Y. Arens, C. Chee, C. Hsu and C. Knoblock. Retrieving

and Integrating Data from Multiple Information Sources. In

Journal of Intelligent and Cooperative Information Systems,

Vol. 2, June 1993.

[10]M.J. Carey et al. Towards heterogeneous multimedia

information systems: The Garlic approach. Technical Report

RJ 9911, IBM Almaden Research Center, 1994.

[11] Babu S., Bizarro P., Adaptive Query Processing in the

Looking Glass. Proc. of the 2nd Biennial Conf. on Innovative

Data Systems Research (CIDR), Jan. 2005.

[12] JGraph - The Java Open Source Graph Drawing

Component, http://www.jgraph.com/jgraph.html

[13] HSQLDB – A Lightweight 100% Java SQL Database

Engine, http://hsqldb.org/

[work] P. Ziegler. User-Specific Semantic Integration of

Heterogeneous Data: What Remains to be Done? Technical

Report ifi-2004.01, Department of Informatics, University of

Zurich, 2004. http://www.ifi.unizh.ch/techreports/TR

2004.html.

[INDUS] J. Reinoso-Castillo, A. Silvescu, D. Caragea,

J. Pathak, V. Honavar, Information Extraction and

Integration from Heterogeneous, Distributed

Autonomous: A Federated Ontology-Driven Query-

Centric Approach. In 1st IEEE Intl. Conference on

Information Integration and Reuse (IRI-2003).

http://www.jgraph.com/jgraph.html
http://hsqldb.org/

